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ABSTRACT

The question of whether rain gauge data from complex terrain are suitable to test physical models of
orographic precipitation or to estimate free parameters is addressed. Data from three projects are consid-
ered: the Intermountain Precipitation Experiment (IPEX) and the California Land-falling Jets Experiment
(CALJET), both in the United States, and the Mesoscale Alpine Programme (MAP) in the European Alps.
As a prototype physical model, a new linear theory including airflow dynamics, condensed water advection,
and leeside evaporation was employed. Theoretical considerations using the linear model showed sensitivity
of point measurements across an ideal hill. To assist in model evaluation with real data, a new measure of
“goodness of fit” was defined. This measure, “location sensitivity skill” (LSS), rewards detail as well as
accuracy. For real data comparison, the linear model predictions show skill using traditional methods and
the new LSS measure. The findings show that the wind direction and stability, and especially the cloud time
delay (tau), are the sensitive parameters for point precipitation. The cloud time delay was the primary
controller of point precipitation amplitude, and the stability tended to shift the precipitation pattern. Direct
measures of tau are generally not obtainable, but this study indirectly constrained tau to 0–1000 s. The need
for a denser observational network with tighter time control was revealed.

1. Introduction

One of the most challenging problems in weather
forecasting is the quantitative prediction of precipita-
tion. This challenge is even greater in regions with com-
plex terrain where the ability to evaluate precipitation
forecasts is significantly reduced due to nonrepresenta-
tive rain gauge sites and insufficient rain gauge density.
This difficulty is unfortunate from a practical point of
view, as forecasting of flash flooding, mudslides, ero-
sion, water resources, and glacier mass budgets in
mountainous terrain depends on accurate models.

At the same time, the subject of orographic precipi-
tation has an inherent simplicity as a good part of the
condensation is caused by forced ascent over fixed,
well-known, terrain shapes (Charba et al. 2003). Oro-
graphic precipitation is a natural laboratory for cloud
physics and dynamics (Rauber 1992). For this reason, in
addition to its practical importance, the subject has re-
ceived considerable attention (Smith 2004). A summary
of proposed physical models is given in Table 1; see also

a review from the early 1990s by Barros and Letten-
maier (1994). As seen in the table, simple models have
advanced over time. In parallel, the development of full
numerical models has proceeded quickly, now offering
a variety of “dynamical cores,” cloud physics param-
eterizations, and methods for applying boundary and
initial conditions (e.g., Hodur 1997). With all these
models available, the question of model verification be-
comes more urgent. Model development without data
constraint is inefficient and unproductive.

Data for evaluating precipitation models comes from
two sources: 1) routine climatological rain gauge, radar,
and streamflow measurements and 2) intense field pro-
grams with enhanced observing systems.

Model comparison with proxy methods such as
stream gauges, which is inferred from area-integrated
precipitation, involves an additional model to handle
runoff delays (Jasper and Kaufmann 2003), adding un-
certainties. Radar information is often truncated by
shielding terrain (White et al. 2003), and in addition
there are problems such as refraction, particularly for
short-wave radars. Even in more traditional rain gauge
networks, the accuracy might be poor because of fac-
tors like the airflow around the collector (Yang et al.
1998). In snow drift cases this is particularly true (H.
Olafsson 2003, personal communication).

Over the last three decades, many targeted field pro-
grams have been carried out around the globe, for ex-
ample in the European and New Zealand Alps, and in
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the Cascade, Sierra, and Wasatch Ranges in the west-
ern United States. In this paper, we focus on conven-
tional point precipitation data from three field pro-
grams: the Intermountain Precipitation Experiment
(IPEX; Schultz et al. 2002), the California Land-falling
Jets Experiment (CALJET; Ralph et al. 1998), and the
Mesoscale Alpine Programme (MAP; Bougeault et al.
1997, 2001). Thus, our work can be put in a context of
more complete observations and analysis (sections
4–6). For a prototype model, we choose the linear
theory of Smith and Barstad (2004) as it is simple to
apply and has a small set of free parameters. A similar
exercise could be undertaken with any other simple or
full numerical model.

This paper is organized as follows. A brief outline of
the linear model development is found in section 2. In
section 3 we investigate the sensitivity of point data to
model parameters. In section 4, we introduce a new
statistical measure of model performance. In section 5
we create a synthesized dataset and test if we are able
to infer the uncertain input parameters to the model.
We also show how errors in the data make this infer-
ence of input parameters more difficult. In section 6, we
test the model against data from three field projects.
Section 7 summarizes our results.

2. The linear theory of orographic precipitation

As a prototype physical model, we use the linear
steady-state theory of orographic precipitation pro-
posed by Smith and Barstad (2004). A key component
of the model is the advection of vertically integrated
condensed water [qc(x,y) � cloud water density and
qf(x,y) � hydrometeor density] written as

U · �qc � S�x, y� � qc ��c and �1a�

U · �qf � qc ��c � qf ��f , �1b�

where �c and �f are the constant characteristic time
scales for cloud water conversion and hydrometeor fall-
out and S the source term of cloud water. See Table 2
for further explanation of variables. If airflow dynamics
is neglected, S in (1a) can simply be S(x,y) �
�v0U · �h(x, y) [i.e., the raw upslope model from Smith
(1979)], where �v0 is the average water vapor density at
the surface and �h the terrain slope. As lifting in front
of a mountain drives S positive, the sink in (1a) acts in
(1b) as a source, and (1b) has precipitation [P(x,y) �
qf /�f] as the final sink to the system; S gets the opposite
sign in downslope regions. Negative precipitation gen-

TABLE 1. A selection of orographic precipitation models showing the evolution throughout the years. An empirical precipitation
efficiency factor (PE factor) is often used to limit the precipitation. In the second column, raw upslope is the vertical velocity constant
with height, simple is the linear reduction with height to the level of no vertical motion, linear wave is the linear gravity wave theory,
and numerical solves equations numerically.

References Airflow dynamics Cloud physics Remarks

Fraser et al. (1973); Hobbs et al. (1973) 2D, linear wave Sophisticated Ice phase only
Collier (1975) Simple Drift only
Colton (1976) 2D, ? Drift only PE factor
Rhea (1978); Hay and McCabe (1998) Simple Drift only PE factor
Smith (1979) Raw upslope Instant
Alpert and Shafir (1989) Raw upslope Drift, diffuse PE factor
Haiden et al. (1990) Simple Conversion, drift
Oki et al. (1991) Nonlinear, numerical Instant PE factor
Barros and Lettenmaier (1993) 3D, linear wave Instant PE factor; see various extensions

in the literature
Sinclair (1994) Simple Instant PE factor
Smith (2003) Raw upslope Linear, conversion and drift Tune with terrain smoothing
Kunz (2003) 3D, linear wave Conversion and drift PE factor
Smith and Barstad (2004) 3D, linear wave Linear, conversion and drift Tune with time delay
Colle et al. (1999); Mass et al. (2002) Nonlinear, numerical Sophisticated Full numerical model

TABLE 2. Some explanation of symbols used in the linear model.

Name Symbol Typical values

Terrain elevation h(x,y) 1–2000 m
Intrinsic frequency; k and l are respective wavenumbers � � Uk � Vl 0.01–0.0001 s�1

Horizontal wind; U and V are respective components U � Ui � Vj 1–50 m s�1

Moist stability frequency N 0–0.01 s�1

Water vapor scale height Hw 1–5 km
Conversion time �c 200–2000 s
Fallout time �f 200–2000 s
Uplift sensitivity factor: �	0 � surface water vapor density, 
 � environmental

lapse rate, � � moist-adiabatic lapse rate
Cw � �	0
/� 0.001–0.02 kg m�3

Background precipitation rate P� 0–5 mm h�1

Vertical wavenumber m 0.01–0.0001 m�1
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erated in strong downdrafts is unphysical and is trun-
cated away.

These equations, and the airflow dynamics equations,
can be solved using Fourier transforms to obtain

P̂�k, l� �
Cwi�ĥ�k, l�

�1 � imHw��1 � i��c��1 � i��f�
and �2�

P�x, y� � �� P̂�k, l�ei�kx�ly�dkdl � P�. �3�

The symbols in (2) and (3) are described in Table 2.
The first parenthesis in the denominator in (2) de-
scribes how the source term is modified by airflow dy-
namics. The two remaining parentheses in (2) describe
the advection of condensed water during conversion
and fallout. The model reduces to the raw upslope
model when Hw � �c � �f � 0 and Cw � �v0. See Smith
and Barstad (2004) for further detail about the model.

The pattern and amount of precipitation predicted by
(2) is controlled primarily by two types of nondimen-
sional parameter. First is the nondimensional moist
layer depth, H̃ � NHw/U, where U is the magnitude of
the wind. Large values of H̃ reduce the amount of con-
densation as the uplift does not penetrate the moist
layer. The condensation is also shifted upstream due to
gravity wave tilt. The other type of control parameter is
the nondimensional cloud drift time �̃ � U�/a, where a
is the mountain half-width. Large values of �̃ indicate
that condensed water will drift onto the lee slopes and
evaporate, instead of converting and falling on the
windward slopes. For the purpose of simplifying the
analysis, we have set the two tau values equal through-
out this paper. A discussion of this approach may be
found in Smith and Barstad (2004).

3. Parametric sensitivity of point precipitation

In this section, we show how sensitive point precipi-
tation is to the governing parameters in a physical
model. The insight gained here will help in the real
analyses to follow.

The sensitivity of precipitation to �̃ and H̃ is dis-
played by mapping out the parameter space defined by
these numbers for a specific point. An isolated circular
Gaussian mountain with half-width a � 20 km is chosen
as the underlying topography. In linear theory the
mountain height (hm) is a multiplier rather than a con-
trol parameter. The parameter space for three chosen
points across the centerline of the mountain are shown
in Fig. 1: (a) the upslope point, (b) the mountain peak,
and (c) the downslope point. The precipitation values
are normalized with the raw upslope value (�̃ � 0, H̃ �
0) for the upslope point (x � �a).

Point a has its maxima, equal to unity (i.e., the raw
upslope value), close to its origin in Fig. 1a. As the
moist layer deepens (increased H̃), the forced ascent
is unable to penetrate and condense vapor at all levels.

As the cloud time delay (i.e., �̃) increases, the precipi-
tation is advected downstream of point a. A minor ef-
fect, barely seen in Fig. 1, is the increase in precipitation
with �̃ for large moist layer depth. The tilted wave re-
quires a larger �̃ to carry precipitation back to the wind-
ward slope station.

For point b at the hilltop, the maximum is shifted to
�̃ 
 0.4 and is slightly reduced because of the smoothing
effect from the increased tau. As the condensation
source function is maximum upstream of point a, con-
siderable advection is required to bring precipitation to
point b. In Fig. 1b, we also see the effect of the tilted
wave. As the moist layer depth increases, a greater
cloud delay is necessary to counteract the effect of up-
stream wave tilt.

Precipitation at point c has a much smaller magni-
tude and its sharp maximum is located around �̃ � 2.
The sharp gradient just below unity is due to drying
aloft above the mountain peak caused by the wave dy-
namics. Only for mountain widths comparable to or less
than U� will precipitation particles spill over to point c
on the lee side.

4. Measures of model skill

The skill of a model must be judged from a statistical
measure. Various scores and skills may be found in the
literature. Textbooks by Wilks (1995) and Jolliffe and
Stephenson (2003) provide an introduction to forecast
verification. A shorter text by Nurmi (2003) gives a nice
review of the various measures and their capabilities.
See also the overview by Jasper and Kaufmann (2003).

Some studies have assigned precipitation observa-
tions to intervals—so-called stratification by precipita-
tion—evaluated by various score and skill measures
(Wilks 1995; Colle et al. 1999). Stensrud and Wandishin
(2000) presented a summary of various measures and
proposed a correspondence ratio in the evaluation of
forecasts. Their measure is an extension of the well-
known threat score and, therefore, requires stratifica-
tion of the compared fields. Cherubini et al. (2002) pre-
sented upscaling techniques as an alternative to point-
precipitation-based evaluation. Typically measures like
root-mean-square error (rmse; see definitions below)
and bias (bias) are involved in the evaluation. We shall
see in section 5 that models having very detailed fields
are normally penalized more harshly than smooth mod-
els for inaccuracies. This might explain why increased
resolution in numerical models is not rewarded propor-
tionally (Mass et al. 2002). To mitigate this, we will add
another measure to our evaluation approach.

The traditional spatial error estimates such as rmse
and bias are defined as

rmse ��1
n �

i�1

n

�Pi � Oi�
2 and �4�
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bias �
1
n �

i�1

n

�Pi � Oi�, �5�

where n is the number of samples, and Pi and Oi are the
predicted and observed samples, respectively (Wilks
1995).

A deficiency of a measure often used in the evalua-
tion of models can easily be illustrated using a regular
Pearson correlation (Wilks 1995); imagine two series
made up of random numbers. The correlation is near
zero. By smoothing one of the series, the correlation
improves. Measures without constraints on the level of
details are in danger of favoring smoother fields. We
prefer statistical measures that give credit for both de-
tails and accuracy, particularly as we deal with oro-
graphic precipitation characterized by large spatial vari-
ability. This will encourage the development of detailed
models. For these reasons, we propose a new measure
called location sensitivity skill (LSS).

Calculation of the LSS is done by testing the error
estimates E (e.g., bias and rmse) when station locations
are moved randomly around within an assigned radius

(rmax) from the correct location. Numbers from a ran-
dom generator determine the angle and distance from
the correct location within rmax; see illustrations in Fig.
2. The maximum radius is steadily increased and the
error estimate is repeatedly recalculated. Ideally, the

FIG. 1. Parameter space (see text) for normalized precipitation
on a circular Gaussian mountain for three specific points: (a)
mountain upstream half-width, (b) mountain center, and (c)
mountain downstream half-width. The precipitation at the vari-
ous points is normalized with the upstream half-width value of
the raw upslope model. The axes relate to the nondimensional
moist layer depth (Ĥ) and cloud time delay (�̂).

FIG. 2. Schematic drawing of how the location sensitivity skill
(LSS) works. (left) An assigned maximum radius (rmax) constrains
the “new” location (dot) of the station. (right) A schematic pic-
ture of how the error estimate (E ) is a function of rmax; E� is
evaluated at rc. See text for further explanations.

88 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 6



error increases as we move away from the station, and
it eventually flattens out (E�; see Fig. 2). We define the
LSS as

LSS � 1 �
Ecorrect

E�

. �6�

In a smooth-field case, the locations of the stations do
not matter, and errors do not change with increasing
radius, and (6) gives zero skill. Whereas when the cor-
rect location error in (6) is small and E� is big (i.e., a
detailed model field with high accuracy), the skill is
closer to unity.

As a practical matter, one must cut off the LSS cal-
culation at some finite radius, rc (Fig. 2). In this paper
we have chosen rc to be 40 km where the error flattens
out. In the terrains we have investigated, LSS change
little beyond that cutoff. Any improvement in E be-
yond this limit is not expected to be explained by model
physics (U� � rc).

5. Parameter inference from synthesized data

There are several uncertain parameters in the linear
model system—first of all, the cloud time delay factors,
which are set equal, � � �c � �f, to simplify our ap-
proach. Previous estimates of tau vary from 200 to 2000
s (Smith 2003; Smith et al. 2005). Additionally in com-
plex terrain, the overall wind direction may not be ac-
curately known. A small change in wind direction (dd)
might influence the resulting point precipitation (Nuss
and Miller 2001; Ralph et al. 2003). Point precipitation
is also sensitive to stability (N) and background pre-
cipitation (P�). The main goal for this section is to see
if the underlying parameters (�, dd, N, P�) can be de-
tected through the minimization of errors. We will fo-
cus on the (�, dd) space and we will test the minimiza-
tion procedure when errors (discrepancies between
model and observation data) are added to the fields.

a. Uncertain input variables—Microphysics and
wind direction

To test how different error estimates such as rmse
and bias can be used to infer the correct values of pa-
rameter pairs such as (�, dd), we use the linear model to
create a synthesized dataset for a given topographic
area with real station locations. We chose to use 73 rain
gauge sites in the Lago Maggiore area (northern Italy),
which is the same network used later in the paper for an
investigation of a real MAP case (see section 6c). The �
was varied from 0 to 2000 s at 100-s intervals. The wind
direction (dd) was changed from 180° to 155° at 6.25°
intervals. The other input variables were kept fixed and
are those of MAP IOP2b. The arbitrarily defined ref-
erence condition had dd � 167.5° and � � 600 s.

Figure 3a shows how rmse changes as a function of
two uncertain input parameters (�, dd). Good conver-
gence to the correct values of dd and � is seen. The

strongest gradient in rmse is found for tau values
shorter than the reference. The maximum amplitudes
in rmse along the x axis at tau � 600 s are about
�1.75 mm h�1.

If the reference � is assumed to be 1200 s, the gradi-
ent in rmse is considerably weaker, and the correct lo-

FIG. 3. Contours of error measure (rmse) as a function of the
uncertain parameters (dd and �) in the linear model system. (a)
The rmse is shown when the correct input parameters are set to be
(dd � 167.5°, � � 600 s). (b) As in (a) but with error added to the
observations, where the error amplitude A � 4. (c) LSS optimum
for correct � � 600 s (solid line) and � � 1200 s (broken line) when
A � 4.
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cation in (�, dd) parameter space does not stand out as
clearly (not shown).

For example the bias, a measure of the systematical
error, does not give as good result as the rmse in the
minimization (not shown). For very short tau, the detail
level increases and the amount of truncated negative
precipitation is enhanced. For longer tau, the pattern
does not necessarily show a monotonic increase away
from the correct tau.

Using the rmse, we have undertaken tests similar to
those in Fig. 3a, but with other parameter pairs (P�, �)
and (N, �). The results are not shown. If P� varies from
0 to 2 mm on the x axis and tau is similar to that in Fig.
3a, then the variation in rmse is �0.75 mm h�1 along
the x axis at the correct �. For N a stronger dependency
is found; the rmse variation is about �1.75 mm/h�1

when N varies from 0.001 to 0.005 s�1 on the x axis.

b. Errors in observation networks

We define errors as either additive or multiplicative.
An additive error might be caused by a thunderstorm
or embedded convection in the area, violating the as-
sumptions of the model. A multiplicative error might
be an uncertainty in wind direction or a proportional
rain gauge error.

The multiplicative error might be written as

Oi � T i �i � T i A Rand0�1
i Oi ∈ �0, AT i�, �7�

where Oi is a single observation and Ti its true value, A
is the error amplitude factor, and Randi

0�1 denotes a
random number between 0 and 1. The observation is
scaled with the true value. When A � 2, the distribution
of Oi is within the range 0–2, and the bias eliminates for
large n is

1
n �

i→n

Oi →
1
n �

i→n

T i. �8�

For other values of A this is not true.
An additive error might be expressed as

Oi � Max�T i � �i, 0�

� Max�T i � ARand�0.5�0.5
i , 0� Oi��0, T i � A�2�.

�9�

Since the additive error is not scaled with the true
value, we must use a max function to avoid negative
values of precipitation. For A � 2, we ensure that the
max function is redundant, as negative values in (9)
cannot occur. Since the random number in (9) is cen-
tered around 0, the bias will be zero (i.e., 8) when the
max function is redundant. Larger values of A do not
meet this requirement, and (8) is not satisfied.

c. Inferring dd and tau from datasets containing
errors

As described in section 5b, errors are added to the
synthesized dataset for a reference run (dd � 167.5°

and � � 600 s) and the results for the additive (A � 4)
error are shown in Fig. 3b. For multiplicative error, the
results give similar trends (not shown). We have pre-
pared Table 3 to show how big the error amplitude (A)
can be while we still are able to recover the correct
location in various parameter spaces. Results for N, P�,
and dd versus � are given for both � � 600 and 1200 s.
In the table, simulations with longer correct taus (1200
s) have greater difficulties identifying the correct tau
due to smoother fields. Just as in section 5a, the bias
estimate is not a good measure for inferring the correct
location in various parameter spaces due to conver-
gence problems in the minimization. This result may
not be surprising based on (8) and the discussion that
followed.

d. Inferring tau from datasets containing errors:
Using LSS

Figure 3c shows the minimization procedure re-
peated, but using LSS to identify the correct tau value.
The only free parameter in the figure is tau, and two
sets of minimizations are shown (600 s, indicated with a
solid line, and 1200 s, indicated with a dashed line). The
figure shows that LSS has a crisp definition of the cor-
rect underlying tau values with errors added (A � 4).
When the correct underlying tau is 1200 s, the signal is
weaker having a less sharp gradient. For larger A, the
maxima are proportionally less. For A � 20, the LSS
shows only small values (around 0.1 for � � 1200 s and
0.25 for � � 600 s) and has problem in focusing at the
correct �.

It is difficult to specify an error amplitude A for real
data. Nevertheless, this analysis is meant to build con-
fidence in the inference of unknown parameters. Like-
wise, it is meant to identify the most sensitive input
parameters next after �. We conclude that the determi-
nation of model parameters by rmse minimization is
possible under some but not all circumstances. The LSS
measure appreciates details in another way than rmse,
and when errors are added to the data, the LSS assists
in finding the correct �. In the following, we anticipate
� to be the main free parameter.

TABLE 3. For various free parameters (N, P�, dd), how capable
are rmse and bias minimization in retrieving underlying variable
as the error amplitude (A) becomes larger? The yes/no (Y/N)
answer this question for tau � 600 s/1200 s. See text for further
explanation.

A

N P� dd

Rmse Bias Rmse Bias Rmse Bias

0 Y/Y Y/Y Y/Y Y/Y Y/Y Y/Y
2.5 Y/Y N/N Y/Y N/N Y/Y N/N
5 Y/Y N/N Y/N N/N Y/Y N/N
7.5 Y/Y N/N Y/N N/N Y/N N/N

10 Y/Y N/N N/N N/N Y/N N/N
15 Y/N N/N N/N N/N Y/N N/N
20 N/N N/N N/N N/N N/N N/N
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6. Comparing with real data

Data from three field campaigns have been used to
constrain the main free parameter. In order to have
control of the temporal evolution, we have sought data
with high temporal resolution. Although the chosen
cases are quasi-steady state, we have averaged hourly
records to limit the amount of model runs and the
amount of data to compare.

a. IPEX IOP3

The Intermountain Precipitation Experiment (IPEX)
campaign was undertaken in Utah, in the western
United States, 2000 (Schultz et al. 2002). The intensive
observing period (IOP3) (0600 UTC 12 February–0600
UTC 13 February) stood out as the most significant
orographic precipitation event in this campaign (Cox et
al. 2005). The 12-h period from 1300 UTC 12 February
to 0100 UTC 13 February included most of the precipi-
tation in IOP3. Generally, the wind direction changed
from south-southwest to more west-southwesterly dur-
ing the intense precipitation period. Balloon soundings
were issued every third hour, and the soundings at
Ogden (OGD; see Fig. 4) in the Wasatch Mountains
and at Oasis (LMR) about 100 km upstream (Figs. 4
and 11 in Cox et al. 2005), show that the wind had a
shifting behavior with height. Judging from the 1735
UTC sounding at LMR, the wind was more westerly in
a layer around 600 hPa, and an along-barrier jet was
weakening throughout the event. The soundings
showed a small (0–3 K) dewpoint depression and weak
moist stability, (Schultz et al. 2002). During IPEX, 37
reliable rain gauges reported hourly in the Oquirrh and
Wasatch Mountains located east and south of Great
Salt Lake. In addition, the National Oceanic and At-
mospheric Administration (NOAA) P3 aircraft flew
several missions along the mountain ridge, scanning
with its X-band tail radar. We judge the number of rain
gauges and their distribution to be insufficient to sup-
port a full statistical analysis, so we used a direct com-
parative approach.

Figure 4a shows the hand-drawn isolines for accumu-
lated precipitation for the whole event (Cheng 2001).
Correspondingly, Fig. 4b shows the simulated precipi-
tation pattern for the most intense 12-h period. The
input parameters were wind speed � 12.5 m s�1 from
the west-southwest (dd � 240°), N � 0.003 s�1, T0 �
278 K, and � � 500 s. The input values (T0, dd, and wind
speed) are based on the LMR/OGD soundings. Com-
paring the two panels in Fig. 4, we see that the overall
precipitation pattern seems to be nicely reproduced.
The predicted amounts compared to the hand-drawnFIG. 4. The Wasatch Mountains located to the east of Great Salt

Lake received heavy precipitation due to winds from the west-
southwest during IPEX-IOP3. (a) Observations with hand-drawn
isolines of total precipitation for IOP3 with contours every 10 mm.
The figure is taken from Cheng (2001). (b) Linear model predic-
tion for 12-hourly precipitation in mm with contours every 10 mm.
The � was set to 500 s and N � 0.005 s�1. A light smoothing on
short-wave length (less than 800 m) is applied on the terrain

←

(shaded) to avoid artificial high-frequency waves. The two heavy
lines indicate vertical cross sections shown in Fig. 5.
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isohyets are too big. This may indicate that a longer tau
is more appropriate. It may also be that the locations of
the observations constituting the hand-drawn map were
such that the largest amounts of precipitation were
missed. The dry areas downstream of the mountain
crest can be seen in both fields. Weak precipitation
upstream of the mountain foothills in the linear model
caused by the upstream tilt in the wave dynamics is also
seen.

The radar cross section taken from the P3 shows that
the main orographic cloud extends 10–15 km upstream
from the crest, and the thinner cloud layer extends to
about 20 km upstream; see Fig. 9 in Schultz et al. (2002;
information available online at www.nssl.noaa.gov/
teams/ipex/iop3). The radar cross section perpendicular
to the ridge shows an abrupt cutoff of the main oro-
graphic cloud at the crestline. This is associated with
descent and evaporation on the lee side of the Wasatch
Mountains. This cutoff matches well what we see from
Fig. 4; the main precipitation is located near the peak of
the mountain, about 2*U� � 20 km downstream of the
condensation source region.

Whereas Fig. 4b shows results from a single model
run, Figs. 5a,b depict the sensitivity of the precipitation
to input variables N and �. Five observations are lo-
cated in the vicinity of each cross section indicated in
Fig. 4. The station locations are projected into cross-
sectional planes, and the hourly precipitations are
shown in Figs. 5a,b. The linear model is run for five
different sets of parameters based on a reference run (�
� 500 s, N � 0.003 s�1). The � (250, 500, and 750s) and

the N (0.001, 0.003, 0.005 s�1) are varied, but the wind
stays fixed. From Fig. 5, we see that the precipitation
rates are most sensitive to the chosen tau value, par-
ticularly for small values. The larger tau values reduce
the peak precipitation significantly and shift it from just
upstream to just downstream of the peaks. Immediately
upstream of the station labeled SNM in Fig. 5a, a large
drop in precipitation is seen as tau increases from 250 to
500 s. This rapid drop with increasing tau is reminiscent
of Fig. 1b for �̃ � U�/a � 0.75. The pattern is much less
sensitive to static stability.

All the model runs underpredict the precipitation at
stations in the valley west of the Wasatch front. Pre-
cipitation at these stations came primarily in the early
part of the IOP, having more southerly winds, which is
a possible explanation for the discrepancy.

According to our test in section 5a, the variation in
wind direction might also change this picture. However,
the Wasatch Range is more ridgelike, reducing direc-
tion sensitivity.

b. CALJET

CALJET took place in California, in 1997/98. Nei-
man et al. (2002) studied the precipitation’s sensitivity
to wind speed perpendicular to the coastal mountains
for different locations along the Californian coast. The
advantage of this project is the availability of hourly
cross-shore wind components from wind profilers and
hourly precipitation for three profiler–rain gauge “cou-
plets” (northern, central, and southern couplet). The
flows were divided into two categories: blocked and

FIG. 5. (top) Precipitation rate and (bottom) terrain height for (a) the W–E Wasatch cross section and (b) the
slantwise SW–NE cross section indicated in Fig. 4. The points are observed precipitation values and lines are linear
model results. The solid lines are simulations with � � 250 s (short dashed), 500 s (solid), and 750 s (long dashed
line) and various N � 0.001 s�1 (thin), 0.003 s�1 (medium), 0.005 s�1 (heavy line). The other parameters stayed
fixed.
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nonblocked flow situations. We only consider the latter
in this paper. The rain gauges are located between the
upslope and ridge top; so Figs. 1a and 1b are both help-
ful in understanding the response to changing environ-
ments.

According to Figs. 3 and 5 in Neiman et al. (2002),
both cases discussed for the southern and northern cou-
plets had southwesterly (SW) winds during the signifi-
cant precipitation period. For the northern couplet, the
SW winds only reached 2 km, with westerlies prevailing
aloft. Both locations have overall ridgelike mountains
and a line perpendicular to the ridgeline surrounding
the northern station points at 230°, 5° from the flow
direction. For the southern stations a perpendicular line
points to 190°, 35° from the flow direction. The rain
gauge station is located halfway up the slope, similar to
the ideal geometry in Fig. 1a. The stability of the flow
was reported to be near neutral; accordingly, we show
runs with weak stability: N � (0.001, 0.002, 0.003) s�1.
The surface temperature was inferred from reported
equivalent potential temperature and is set to T0 �
288 K.

We show results from the linear model for the north-
ern and the southern rain gauge stations in Fig. 6. We
see that the reduction mechanisms in the linear model
(airflow dynamics and slow cloud physics) generally re-
duce the raw upslope model (heavy solid line) to give
improved agreement with the data. This is particularly
true at the northern rain gauge station (Fig. 6a). For
both stations, the start of precipitation is shifted off
from U � 0 as the wind speed increases.

Figure 7 shows a cross section along the flow for
condensation and precipitation for two wind speeds for
the northern station. The station is located at the origin
of the x axis. Note that the precipitation curves are
smoother and shifted downwind from the condensation
curves. Inspection of Fig. 7 reveals that condensation
produced at the main lifting upstream from the station
will only hit the station for appropriate �̃. The lower
wind speed case is on the very verge of moistening the
station. For the southern station, a peak of condensa-
tion is found immediately upstream, and weak winds
(small �̃) bring precipitation to the station (not shown).
The northern station may have generally deeper verti-
cal penetration than the southern station because the
flow impinging on the ridge at a right angle instead of
from the side. For stronger winds we expect full pen-
etration of the moist layer (small H̃), but more of the
condensate is advected past the stations (larger �̃), lim-
iting the precipitation. The sensitivity to stability in Fig.
6 suggests that the effective stability of the air masses
sensed by the airflow is higher than N � 0.003 s�1.

We have also investigated the central couplet case,
but results are not displayed. In this case, the wind
direction is more south-southwesterly and the model
results favor an explanation that this was a more neu-
tral case with rather short taus (about 250 s).

c. MAP: IOP2b and IOP8

The MAP took place in the fall season of 1999 in the
central southern Alps. The density of conventional rain
gauge observations as well as observation of other at-
mospheric parameters was enhanced, both in time and

FIG. 6. Points are observed hourly precipitation rates from
CALJET mountain stations in the (a) Sonoma area (38.61°N,
123.21°W) referred to as the northern station, and (b) Santa Bar-
bara area (34.51°N, 119.85°W) referred to as the southern station,
both in California. Data are taken from Neiman et al. (2002).
Lines indicate the linear model values at the station locations for
� � 250 s (solid lines) and � � 500 s (broken lines). The stabilities
are N � (0.001, 0.002, 0.003) s�1, where the stronger stability has
the thinner line. The heavy solid line indicates the results from the
raw upslope model.
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in space. The rain gauge density and the amount of data
push for using the statistical evaluation methods dis-
cussed in section 4.

During MAP, two heavy rain events (IOP2b and
IOP8) provided a good opportunity for studying oro-
graphic precipitation, using 73 stations for IOP2b and
59 for IOP8 reporting hourly in the Lago Maggiore
area. The characteristics of the atmospheric parameters
for these two events were different. IOP2b was warm
(T0 � 287 K in our model run) and nearly unstable case
with some embedded convection, while IOP8 was cold
(T0 � 278 K), stable, and had some low-level blocking
(Rotunno and Ferretti 2003). For both cases, the wind
direction comes from the southeast sector (IOP8 had
the largest easterly component), and the wind speed at
850 hPa was between 12 and 20 m s�1 during the most
intense precipitation.

To simplify the comparison between the model and
the observations, we estimated one representative ob-
servation value for each station. This is done by aver-
aging the time series for the most intense precipitation
period, and giving a single value for each station. The
averaging procedure tends to smooth the field, but is a
necessity to reduce our data and for our assumption of
a steady state. The most intense precipitation period is
found from the average precipitation values for the sta-
tions in the area (45°–47°N, 8°–10.5°E). The model data
are interpolated to the station location for comparison.

The goal of our Alpine analysis is twofold: first, to
compare the linear theory and raw upslope models, and
second, to estimate the value of the cloud time delay.
We have prepared Tables 4–7 to show how the two
models perform as the main free parameters change.
The raw upslope model has terrain smoothing as the

free parameter and the linear model has � as the free
parameter.

1) MAP: IOP2B

In IOP2b, the 16-h period 0600–2200 UTC 20 Sep-
tember 1999 had the most intense precipitation. During
this period, the wind profiler at the Lenate airport (Ro-
tunno and Ferretti 2003) showed a steady wind, ap-
proximated to U � 15 m s�1 from dd � 167.5°. The
surface temperature was set 5° lower (T0 � 287 K) than
the value observed at Milano airport (292 K) to avoid
moist instability. As an example of the linear model
performance of IOP2b, we have prepared Fig. 8a,
showing hourly precipitation rates. In addition to the
parameters above, we have set � � 500 s and N � 0.003
s�1. The simulated pattern and amount may be com-
pared with maps of observations in Rotunno and Fer-
retti (2003, Fig. 3); and in Medina and Houze (2003),
their Fig. 6. The overall simulated pattern and amounts
seem to be well reproduced.

With increasing tau, the station–averaged precipita-
tion in Table 4 decreases. In general, this decrease is
caused by “carryover” and increased lee-slope evapo-
ration. The accuracy of the linear model is poor (high
bias and rmse) when only the dynamics in the model is
included (i.e., � � 0). For � � 1000s, we get the best

TABLE 5. Precipitation statistics for IOP2b in the Lago Mag-
giore area: measure of goodness for the raw upslope model as
smoothing increases. The observed station mean is 3.0 mm h�1.
See text for definitions of error estimates.

Smoothing
(km)

Avg
(mm h�1)

Bias
(mm h�1)

Rmse
(mm h�1) LSSrmse

0.8 8.4 5.4 17.6 0.2
2 5.9 2.9 8.9 0.16
3 5.4 2.4 7.0 0
4 4.9 1.9 6.0 0
5 4.6 1.6 5.0 0

10 3.9 0.9 3.0 0.04
20 3.1 0.1 2.5 0.05

FIG. 7. Vertical cross section intersecting the northern rain
gauge station at the origin of the x axis. The direction of the cross
section is aligned with the flow direction (SW). Condensation
(solid lines) and precipitation (broken lines) are shown for two
wind speeds—U � 10 m s�1 (heavy lines) and U � 5 m s�1 (thin
lines) perpendicular to the coast. The model terrain is shown in
the lower panel.

TABLE 4. Precipitation statistics for IOP2b in the Lago Mag-
giore area: measure of goodness for the linear model as the char-
acteristic time scale of conversion and fallout of hydrometeors (�)
increases. The observed station mean is 3.0 mm h�1. See text for
definitions of error estimates.

� (s)
Avg

(mm h�1)
Bias

(mm h�1)
Rmse

(mm h�1) LSSrmse

0 5.4 2.4 10.1 0.04
250 4.1 1.1 5.5 0.00
500 2.7 �0.3 3.7 0.03
750 2.5 �0.5 2.9 0.08

1000 2.6 �0.4 2.5 0.10
1500 2.8 �0.2 2.1 0.09
2000 2.7 �0.3 1.9 0.05
3000 2.3 �0.7 1.8 0.03
4000 1.9 �1.1 1.9 0.02
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overall results (bias � �0.4, rmse � 2.5, LSS � 0.1)
with a relatively high level of spatial detail and rather
low error. Rmse continues to decline for larger tau, but
assuming there are errors in the data (see discussion in
section 5), we trust LSS’s sharper definition of the op-
timum tau.

In Table 5, we repeat the same statistical procedure
for the raw upslope model, with the terrain smoothing
as the free parameter. The model behaves rather
poorly. With little smoothing, the bias and rmse are
very large. LSS shows some skill, in part because the
field is full of small-scale details. With more smoothing,
the bias and rmse decrease, but remain too high. The
LSS shows little skill and is incapable of suggesting an
optimum value for smoothing.

A cross section from the linear model runs with vari-
ous tau values along 8.425°E is shown in Fig. 9a. Nearby
observations averaged over the intense precipitation
period are indicated with crosses and the associated
standard deviation in time are indicated as vertical
lines. The observations near the first elevation in the
south of the cross section tend to vary a lot in time. In
this case, contributions of embedded convection are
likely (Yuter and Houze 2003).

2) MAP: IOP8

The later event (IOP8) lies in another flow regime;
colder and more stable air giving a tendency for stag-

nation. Due to the lack of convection, we expect differ-
ent microphysical behavior in this case (Yuter and
Houze 2003). The intense period of precipitation lasts
about 18 h (0200–2100 UTC 21 October 1999). Figure

TABLE 6. Precipitation statistics for IOP8 in the Lago Maggiore
area: measure of goodness for linear model as the characteristic
time scale of conversion and fallout of hydrometeors (�) increases.
The observed station mean is 1.7 mm h�1. See text for definitions
of error estimates.

� (s)
Avg

(mm h�1)
Bias

(mm h�1)
Rmse

(mm h�1) LSSrmse

0 7.6 5.9 14.4 0.06
250 2.1 0.5 3.8 0
500 1.1 �0.6 1.8 0.01
750 0.9 �0.8 1.4 0.04

1000 0.9 �0.8 1.3 0.09
1500 0.9 �0.8 1.3 0.07
2000 0.9 �0.8 1.3 0.05
3000 0.9 �0.8 1.4 0.03
4000 0.8 �0.9 1.5 0.01

TABLE 7. Precipitation statistics for IOP8 in the Lago Maggiore
area: measure of goodness for the raw upslope model as smooth-
ing increases. The observed station mean is 1.7 mm h�1. See text
for definitions of error estimates.

Smoothing
(km)

Avg
(mm h�1)

Bias
(mm h�1)

Rmse
(mm h�1) LSSrmse

0.8 7.9 6.2 15.3 0.26
2 6.1 4.4 9.5 0.05
3 5.5 3.8 7.5 0
4 5.0 3.4 6.4 0
5 4.7 3.0 5.6 0

10 3.7 2.1 3.4 0
20 2.7 1.1 2.0 0.03

FIG. 8. Hourly precipitation rate simulated by the linear model
for the Lago Maggiore area in northern Italy during MAP, where
crosses indicate station locations: (a) IOP2b with 2.5 mm h�1

contours and (b) IOP8 with 1.25 mm h�1 contours. Heavy con-
tours indicate water bodies.
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8b shows hourly precipitation results from the linear
model simulation with input parameters � � 1000 s, dd
� 135°, U � 18 m s�1, and N � 0.01 s�1.

Tables 6 and 7 show how the skill of the two models
changes as free parameters are changed. In most re-
spects, the error patterns in IOP8 are similar to those in
IOP2b. For the linear theory, the best cloud time delay
is about 1000 s. This value gives small bias and rmse and
the maximum LSS � 0.09.

The raw upslope model performs poorly as before.
With little smoothing, it gives a highly detailed precipi-
tation pattern with very large bias and rmse, but sub-
stantial LSS. When smoothing is applied, the bias and
rmse improve, but LSS no longer suggests any pattern
skill.

Figure 8b shows the linear model cross section for
IOP8 along 8.433°E. Also here, the standard deviation
of the southernmost station is large. This indicates a
non-steady-state behavior, which makes the interpreta-
tion of our results more difficult.

3) THE LINEAR MODEL RESULTS IN COMPARISON
TO RESULTS FROM THE OTHER IOPS:
STUDIES OF THE MAP CAMPAIGN

IOP2b and -8 in the MAP campaign have been the
subject of several studies (e.g., Medina and Houze 2003;
Rotunno and Ferretti 2003; Bousquet and Smull 2003;
Smith et al. 2003; Yuter and Houze 2003; Georgis et al.
2003; Asencio et al. 2003). For IOP2b, Georgis et al.
(2003) noted that rain over the mountains was homo-
geneous with quasi-stationary vertical development,
whereas over the plain upstream, the rain was charac-
terized with convective periods. The general under-
standing from the cited papers is that convection con-
tributed to the large amount of precipitation in IOP2b.
Rotunno and Ferretti (2003) showed that stronger-
stability low-level blocking in IOP8 pushed the rain pat-
tern further upstream and caused a more widespread
precipitation similar to what we see in Fig. 8. We note
that the linear model applied in this paper predicts
these rainfall amounts reasonably well, with no special
treatment of convection or blocking. The surface tem-
perature was set conservatively, limiting the influx of
water vapor. The linear model suggests that the dis-
crepancies between the two cases are first of all due to
surface temperature and perhaps only secondarily due
to static stability differences.

d. Similarities and differences in the three case
studies

Orographic precipitation cases are seldom character-
ized by steady-state conditions. Both microphysics and
wave dynamics are likely to change with time. In this
study, we have picked quasi-steady events with a rather
tight time control to reduce the number of required
model runs. In particular, the MAP campaign data have
been averaged in order to compare observations with
single model runs. The single model runs have allowed
us to discuss the mechanisms in the linear model to a
greater extent.

The linear design of the model favors cases charac-
terized by linear mechanisms and with weak to moder-
ate stably stratified air (no convection or stagnation). In
this study we found indications that the nonlinearity of
the microphysics is important in explaining the large
discrepancy for strong winds in warm air (CALJET).

FIG. 9. (top) Cross section of simulated hourly precipitation
along a longitude in Fig. 8. Three runs with various taus are de-
picted. The thinner line corresponds to the shortest tau. Nearby
averaged hourly observed precipitation rates are indicated with
crosses, and the standard deviations for the respective stations are
indicated with vertical lines; see text for further explanation. (bot-
tom) The terrain along the cross section. (a) IOP2b with cross
section along 8.425°E showing the closest stations within the
range (8.35°–8.5°E). Runs with tau equal to 250 s (thinner), 500 s,
and 750 s (thicker) are shown. Other input variables are equal to
the run in Fig. 8a. (b) For IOP8, the cross section is taken at
8.433°E showing stations from the range (8.41°–8.46°E). The tau
values are 500 s (thinner), 750 s, and 1000 s (thicker).
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Although we have no direct information about the mi-
crophysics in the investigated cases in CALJET, White
et al. (2003) documented frequent cases without bright-
bands (most likely warm rain cases) during the winter
season the experiment took place. Thus by inspection
of a simple warm rain scheme in a numerical model
(Klemp and Wilhelmson 1978), we see that the formu-
lation of cloud water collection by raindrops (Cr � k qcl

qr
0.875, where k is a constant, qcl the mixing ratio of

cloud water, and qr the mixing ratio for rainwater) re-
sults in increased nonlinearity as the cloud/rainwater
content increases. In warm air, increased wind speed
definitely provides more condensate (Jiang and Smith
2003). A positive nonlinearity would give a shorter tau
in fast, moist winds. The data in CALJET would show
a better fit if the stability was increased a little beyond
N � 0.003 s�1 and tau was shortened for high wind
speeds.

In the IPEX case, a bright band was found (Cox et al.
2005) at lower altitudes. A bright band was also found
in MAP IOP2b and IOP8, at 3.5 and 2 km, respectively
(Yuter and Houze 2003). Accordingly, the drift of solid
hydrometeors above the bright bands was significantly
longer than for the CALJET cases. This might be part
of the reason why the �’s for these cases were found to
be longer than for the CALJET-cases.

Generally, we suspect several of the studied cases
have a varying tau. For a CALJET–northern couplet
(Fig.6a), it seems like the clusters of observations indi-
cate two different microphysical regimes. We are not
able to confirm this because we lack microphysical in-
formation about the specific observations in the clus-
ters. Moreover, in the Alpine analysis both IOP’s seem
to have a similar microphysical behavior judging from
the tau values. However, the cold MAP case (IOP8)
might have a longer drift of hydro meteors, and shorter
conversion time, and the IOP2b just the opposite. A
two-layered linear model distinguishing air masses
above and beneath the melting layer might address this
problem.

Several of our case studies had measurements indi-
cating near-neutral stability. Our theoretical approach
in section 3 and Jiang (2003) was to show clearly that
precipitation is sensitive to stability. Flows over moun-
tains often include large latent heat releases altering the
stability. Overturning by convection may have a similar
role. There is no easy way to quantify a bulk stability
for such flows. In CALJET, we found indications, such
as an offset of precipitation from U � 0 and suggestions
from the data to increase the stability, that some sta-
bility is sensed by the flow. On the other hand, a thresh-
old in the microphysics might be an alternative expla-
nation for the offset.

The model–data comparison in MAP was based on
an average of hourly precipitation records. At least for
some stations, large variations were hidden inside the
averaging, particularly near the upwind foothills. Even
if we had used the 1-h sampling frequency to the full

extent in a smaller area, we would have no guarantee
against hidden important structures within the data
(Yuter and Houze 2003). The question of what is the
natural time scale for various orographic precipitation
cases arises.

7. Summary and conclusions

In this paper we have identified challenges in evalu-
ating an orographic precipitation model such as (i) poor
data coverage, (ii) errors in the observations, and (iii)
uncertainty in the model input variables, and (iv) mis-
leading statistical measures of goodness. We have con-
sidered the sensitivity of point precipitation to govern-
ing physical parameters in the orographic precipitation
problem, especially the cloud time delay. We have also
defined a new estimate of the model skill (LSS) that
takes into account the pattern detail of the model field.
While the LSS values found are not impressive, they
seem to assist in finding an optimum value of cloud
time delay. In future field projects, a denser observa-
tion network with tighter time control will allow us to
explore the capability of the LSS measure.

Data from three field experiments have been used to
test the linear model and to constrain its parameters. A
summary of cloud time delays is shown in Table 8. Gen-
erally, tau values in the range up to 1000 s are sup-
ported by our analysis.

We are not satisfied with the accuracy of our tau
estimates, nor do we think that tau values will be the
same in every location or event. Even within the same
storm, tau might vary. The tau’s value is important,
however, as it summarizes the practical effect of cloud
physics processes. Our results suggest that future ob-
servation and modeling projects should try to estimate
the cloud delay parameters and the role of condensed
water drift and downslope evaporation. Perhaps future
projects could independently estimate �c and �f. In gen-
eral, existing rain gauge networks are not well suited to
this endeavor. Models, including the linear model, may
be used to identify critical observation points and
strong gradient regions where measurements could best
be added to estimate the cloud delay parameters and
test model performance. We have seen that the cloud
time delay primarily controls the precipitation ampli-
tude and to some extent shifts the precipitation pattern.

TABLE 8. Project summary. The third column refers to the mi-
crophysics. “Estimated tau” refers to the best-fit values inferred.

Project

Type of data

Regime
Estimated

tau (s)Time No. of stations

IPEX 12 h 37 Cold 500–1000
CALJET hourly 2, including

wind profilers
Warm? 200–500

MAP 2b 16 h 73 Cold �1000
MAP 8 18 h 59 Cold �1000
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The stability has a second-order effect, primarily shift-
ing the precipitation pattern, particularly for wider
mountains. By deploying rain gauges such that we are
able to catch the maxima and the gradients found
downstream crestlines (cf. Figs. 1 and 5), we are more
suited to determine tau and stability in events. As in-
flow conditions may change rapidly, experiments with
tight time control are needed.
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